已知x^2+1⼀x^2=3, 求x^3+1⼀x^3的值

已知x^2+1/x^2=3, 求x^3+1/x^3的值要有详细步骤,谢!
2025-12-16 15:12:50
推荐回答(2个)
回答1:

可以死算 也可以有如下简便方法:
所求式=(X+1/X)(X^2+1/X^2-1)
而(X+1/X)^2=X^2+2+1/X^2=5
所以(X+1/X)=正负根号5
而(X^2+1/X^2-1)=2
所以 所求为 正负2根号5

回答2:

(x+1/x)^2=x^2+2+1/x^2=3+2=5
所以x+1/x=±√5
x^3+1/x^3=(x+1/x)(x^2-1+1/x^2)=±√5*(3-1)
=±2√5